推进器相对于整个飞行器来说是很小的,发力的位置甚至可以算作‘一个点’,一个点去进行发力,骤然间力度过大,甚至可能导致整个飞行器‘翻车’。 所以负责转向的电力推进器,只能尽量减小功率,转动最初始给予的动力,甚至是从零开始慢慢增大了。 这就导致飞行器的灵活性严重受限,转向都成了很大的问题。 后续的几天,王浩就开始召集所有人进行论证,让他们想一些其他的转向方法,好多人都从战斗机上去找灵感。 机翼,是被提出最多的想法。 “如果在主仓上方安装一个转向翼,就可以控制让飞行器自动转向。” “我们可以设计让电力推进器只朝着一个方向运转,就像是飞机一样朝前飞,机翼来控制方向……” 这个想法是可行的。 现在正常的飞机都是这样的,发动机是固定好的,只朝着一个方向运转,不会给予其他方向的力,飞机的转向就靠改变机翼的方向,就像是海里的帆船一样,改变风帆的方向,就能够改变航行方向。 王浩直接否定了这个想法,他给出的理由也很简单,“我们是研究反重力飞行器,而不是常规的飞机。” “如果采用飞机的转向方式,它的灵活性肯定赶不上常规战斗机。” “灵活性连常规战斗机都赶不上,我们的研究又有什么意义?” 其他人顿时无话可说。 王浩也没什么太好的想法,他就只能让大家一起去开动脑筋。 后来有个力学博士,名字叫周昌,他提出了一个很有意思的建议,“我们是不是可以让飞行器整体快速的旋转?” “就像是一些ufo……” 好多人脑子里顿时出现了一个ufo飞碟的圆盘,在空中不断的旋转的图像,也几乎下意识觉得建议不靠谱。 王浩倒是听的眼前一亮,他最缺少的就是灵感,而灵感已经有了。 从理论设计方向上去思考,周昌的建议确实是可行的,当飞行器要进行转向的时候,整体进行快速的旋转,旋转的速度越快,转向就会越快。 其中的物理逻辑可以参考不断旋转的足球,当足球不断旋转的时候,在空中划过的轨迹是一条弧线。 这主要是因为旋转中的足球,两端相对于空气的速度是不同的,速度大的一侧对球的整体压强小,两边的受力自然是不一样的,就会出现弧线的轨迹。 但是,技术问题也摆在面前,让飞行器整体旋转不是问题,即便再怎么设计飞行器的旋转,飞行员所在的主仓,也就是最中心的位置,也肯定是不旋转的。 所以最大的问题是主轴承压能力。 整个飞行器开启反重力减重以后,重量依旧会超过两吨,不断的快速旋转肯定会对主轴承压能力是个挑战。 另外,也会引起一些其他问题。 比如,飞行器大部分的部件,都会承受高速旋转带来的压力,也就会形成一个方向指向中心的向心力,旋转的速度越快,向心力越大、角动量越大。 那么每一个部件都必须固定好,不能够在旋转的过程中,出现任何的位置变化。 当内部电子系统运转中,还不断旋转的时候,也可能会出现一些磁场或其他附带影响。 这些都是问题。 针对所有附带的问题,大家齐心合力一起讨论解决,最终难以解决的还是主轴问题,现在的主轴性能都已经不够用,再加上转向的快速旋转,就需要一块性能超强、使用寿命超强的主m.comic5.cOM